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For simple parallel shear flows on the f -plane and the equatorial β-plane we derive
an energy norm for zonally invariant perturbations. It is used to derive the linear
stability boundary for when these flows are inertially stable in the classical sense but
may be destabilized due to unequal rates of diffusion of momentum and heat. The
analysis is valid when there are arbitrary, zonally invariant, no-slip boundaries which
are perfect thermal conductors.

1. Introduction
For a zonally symmetric flow U (y, z) in the x-direction subjected to zonally invariant

perturbations, the classical criterion for inertial (or symmetric) instability is that

N2Φ < f 2U 2
z , where Φ = f (f − Uy), (1.1)

is the Rayleigh discriminant, f the Coriolis parameter, Uy = ∂yU the horizontal
shear, Uz = ∂zU the vertical shear and N2 = −(g/ρ0)∂ρ/∂z the square of the buoyancy
frequency with g the gravitational constant; ρ0 is the constant reference density that
arises in the context of the Boussinesq approximation while ρ is the density. When
N2Φ > f 2U 2

z the flow is stable in the classical sense. However, for stability one cannot
have both Φ < 0 and N2 < 0: such a flow is unstable (Ooyama 1966; Charney 1973).
In what follows we will assume that there is statically stable stratification N2 > 0.

By ‘classically’ stable or unstable we mean that stability/instability for inviscid
and adiabatic fluids can be established in a variety of ‘classical’ ways. One is
to modify Rayleigh’s (1916) fluid ring exchange argument (for circular vortices)
to include rotation and stratification and replace the conservation of absolute
angular momentum by the conservation of absolute linear momentum m =U − fy.
This (infinitely long) fluid ‘rod’ exchange argument is described in Holton (1992).
This is essentially an energy argument where the flow is considered stable if the
exchange leads to a hypothetical increase in total (kinetic and potential) energy. A
Lagrangian displacement argument, first introduced by Solberg (1936), leads to the
same stability/instability conditions. A fluid element is imagined to be displaced,
again conserving angular momentum or linear momentum and density, while the
ambient pressure field is presumed unchanged. If such an element is found to
accelerate away from its original position, the flow is unstable; if ‘pushed’ back,
it is stable. Mathematically more rigorous is Ooyama’s (1966) method which utilizes
a Lagrangian displacement field, taking continuity and pressure perturbations into
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account. In the small-displacement limit, conditions for growth/decay of the material
displacements are established as well as time-evolution equations for the perturbation
energy and total displacement field (volume integrated). Ooyama essentially used
Fjørtoft’s (1950) energy method but augmented it with a clever construction to prove
instability/stability, having realized that Fjørtoft’s assumption of the existence of
normal-modes solutions may be erroneous.

In (1.1) Uy , Uz and N2 can be variable but it is only valid if diffusion of heat and
momentum are ignored. McIntyre (1970) found through normal-modes analysis on
an unbounded domain that when Uy, Uz and N2 are constant, the instability criterion
is

N2Φ <
(1 + P )2

4P
f 2U 2

z , where P = ν/κ (1.2)

is the Prandtl number with ν the kinematic viscosity and κ the diffusivity (of heat).
Since (1 + P )2/4P > 1 except when P = 1, it is seen that for all P �= 1 the flow is
‘more unstable’ than the classical criterion (1.1) would indicate. That is, flows with
P �= 1 and

f 2U 2
z < N2Φ <

(1 + P )2

4P
f 2U 2

z

are unstable whereas (1.1) would predict stability. For small or large P , this ‘extra’
instability range can become large. If there is no vertical shear (Uz = 0) the criteria
(1.1) and (1.2) coincide. Hence, the ‘diffusive destabilization’ discovered by McIntyre
only occurs for vertically sheared flows.

Through a consideration of what one might call the evolution of ‘effective’ energy
or generalized energetics, we show in § 2 the converse of (1.2), namely that when
N 2Φ > (1 + P )f 2U 2

z /4P the flow is linearly stable. The derivation is simple and does
not depend on the assumption of the existence of normal modes. It works equally well
for infinite domains as for flows bounded in the meridional (y, z)-plane by arbitrary
no-slip rigid boundaries that are thermally conducting. We construct a positive-
definite (Lyapunov) functional which defines a norm ‖ · ‖ for the perturbations. With
viscosity and diffusion added we determine under which conditions d‖ · ‖/dt � 0 (t is
time). If these conditions are met, (asymptotic) stability is established.

In § 3 we use the same approach to derive the stability criterion for a simple
horizontally and vertically sheared flow on the equatorial β-plane with or without
the non-traditional horizontal component of the Earth’s rotation included. There
is no need to make the customary hydrostatic approximation or a normal-modes
assumption, which would involve the introduction of Hermite expansions in latitude
(Dunkerton 1981; Hua, Moore & Le Gentil 1997). Such Hermite expansions seem no
longer an option if one allows for horizontal diffusion in a normal-modes stability
analysis. This is the reason why in for example Griffiths (2003) only vertical diffusion
is considered. In § 4 we summarize the main results and discuss some open questions.

2. A simple zonal flow on the f -plane
For a steady, zonally symmetric parallel shear flow U (y, z) in the x-direction on

the f -plane, the balance equations with the Boussinesq approximation are

f U = − 1

ρ0

∂p

∂y
+ ν∇2U,

g

ρ0

ρ = − 1

ρ0

∂p

∂z
, κ∇2ρ = 0 with ∇2 = ∂2

y + ∂2
z ;
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p and ρ are the equilibrium pressure and density, respectively. As in McIntyre’s
study we consider U = U0 + Uyy +Uzz with Uy = constant and Uz = constant so that
∇2U = 0. The usual thermal-wind balance equation then holds:

g

ρ0

∂ρ

∂y
= f Uz. (2.1)

For ρ we take ρ(y, z) = ρ0(1 − (N2/g)z + (f Uz/g)y), with the square of the buoyancy
frequency N2 = −(g/ρ0) dρ/dz = constant, so that also ∇2ρ =0. Introducing zonally
invariant velocity perturbations u′, v′, w′(y, z, t), a density perturbation ρ ′(y, z, t) and
pressure perturbation p′(y, z, t), and linearizing about the steady state, one finds

Dν
t u

′ + [Uy − f ]v′ + Uzw
′ = 0, (2.2)

Dν
t v

′ + f u′ = − 1

ρ0

∂p′

∂y
, (2.3)

Dν
t w

′ − b = − 1

ρ0

∂p′

∂z
, (2.4)

Dκ
t b − v′ g

ρ0

∂ρ

∂y
− w′ g

ρ0

∂ρ

∂z
= 0, (2.5)

∂v′

∂y
+

∂w′

∂z
= 0, (2.6)

where

Dν
t = ∂t − ν∇2, Dκ

t = ∂t − κ∇2.

In (2.4) and (2.5), b = −gρ ′/ρ0 is the buoyancy. Equation (2.6) indicates that we
assume the fluid to be incompressible. Using the thermal-wind balance equation (2.1)
and the definition of N2, (2.5) becomes

Dκ
t b − f Uzv

′ + N2w′ = 0. (2.7)

In view of (2.6), it is customary to introduce a streamfunction ψ for the meridional
motions, that is, v′ = ∂zψ, w′ = −∂yψ . By elimination between (2.2)–(2.4) and (2.7), a
single equation for ψ results:

Dκ
t (D

ν
t )

2∇2ψ + Dκ
t ∂z[Φ∂zψ + f Uz∂yψ] + Dν

t ∂y[f Uz∂zψ + N2∂yψ] = 0, (2.8)

where Φ is the Rayleigh discriminant defined in (1.1). Equation (2.8) is the
viscous/diffusive version of the so-called Eliassen–Sawyer equation (Sawyer 1949;
Eliassen 1951). If Φ, N2 and f Uz are constant, as in McIntyre’s (1970) study, (2.8)
may allow normal-modes solutions of the form ψ = exp(ωt)Ψ (y, z). Considering an
unbounded domain, McIntyre chose Ψ = exp[ik(y cos φ + z sin φ)], where the real part
is understood. If this is substituted in equation (2.8), the result is a cubic polynomial
in ω. If this cubic has roots ω with a positive real part for some k, φ, the flow can be
considered unstable. McIntyre (1970) found (1.2) through inspection of the properties
of the roots in the limit of vanishing viscosity.

Let us note that, for example, when Uz = 0 and ν = κ = 0, normal modes requiring
Ψ = 0 at rigid boundaries (no normal flow) exist when, say, these boundaries are
at y =0 (vertical sidewall) and z = 0 (horizontal bottom). In that case one can take
Ψ = sin(ly) sin(mz), with l, m the horizontal and vertical wavenumber, respectively.
However, it can be shown (see Høiland 1962) that if the sidewall or the bottom is
slightly tilted, no normal-modes solutions exist with Ψ = 0 at these non-perpendicular
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walls. Similarly, if additionally Uz �= 0, normal-modes solutions do not exist when
the flow is confined to, for example, a rectangular domain (Yanai & Tokiaka 1969).
An interesting consequence of the non-existence of normal modes in a container
with a slanted sidewall filled with a stratified fluid is discussed by Maas et al.
(1997).

In this paper we derive a sufficient condition for stability by constructing an
energy norm, avoiding the use of normal modes. With (2.2) and (2.7) it follows
that

v′ =
f

D

[
N2Dν

t u
′ − f UzD

κ
t b

]
, w′ =

f

D

[
f UzD

ν
t u

′ − Φ

f
Dκ

t b

]
, (2.9)

where

D = N2Φ − f 2U 2
z . (2.10)

The classical condition for stability is that D > 0. Adding v′ × (2.3) + w′ × (2.4) we
get

∂

∂t

1

2
(v′2 + w′2) + f u′v′ − w′b = −u′ · ∇p′/ρ0 + ν(v′∇2v′ + w′∇2w′). (2.11)

Substituting (2.9) in (2.11), the sum

f u′v′ − w′b =
f 2

D

[
N2u′Dν

t u
′ − Uz

(
u′Dκ

t b + bDν
t u

′) +
Φ

f 2
bDκ

t b

]
. (2.12)

Keeping all time-derivatives on the left-hand side, we obtain

∂

∂t

1

2

[
v′2 + w′2 +

f 2

D

(
N2u′2 − 2Uzu

′b +
Φ

f 2
b2

)]
= −u′ · ∇p′/ρ0

+ ν(v′∇2v′ + w′∇2w′) +
f 2

D

[
N2νu′∇2u′ − Uz(κu′∇2b + νb∇2u′) +

Φ

f 2
κb∇2b

]
. (2.13)

By completing the square on the left-hand side in the term (f 2/D)(N2u′2 − · · ·), one
finds after integration over the meridional plane that

dE

dt
=

d

dt

∫
1

2

[
v′2 + w′2 +

f 2N2

D

(
u′ − Uz

N2
b

)2

+
b2

N2

]
dV (dV = dy dz)

= −
∫ ∫ [

ν(|∇v′|2 + |∇w′|2) +
f 2

D

(
νN2|∇u′|2 − (ν + κ)Uz∇u′ · ∇b + κ

Φ

f 2
|∇b|2

)]
dV

(2.14)

provided that∫ ∫
∇ ·

[
ν(v′∇v′ + w′∇w′) + (f 2/D)

(
νN2u′∇u′ − Uz(κu′∇b + νb∇u′)

+ κ
Φ

f 2
b∇b

)]
dV = 0 and

∫
∇ · (u′p/ρ0) dV = 0. (2.15)

If there are rigid boundaries, we prescribe the no-slip condition at such boundaries, i.e.
u′, v′, w′ = 0. Also at such boundaries we prescribe b =0. If the flow is unbounded in
one or more direction, we assume that for large distances from the origin somewhere
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located in the domain, the perturbations vanish. With these conditions, (2.15) will
hold. To obtain the right-hand side in (2.14), we used the fact that N2, Uz, Uy (and
therefore D and Φ) are constant.

But, if ν = κ = 0, the right-hand side in (2.14) vanishes and D, N2 and Uz can be
variable. In that case we have dE/dt = 0 where

E =

∫ ∫
1

2

[
v′2 + w′2 +

f 2N2

D

(
u′ − Uz

N2
b

)2

+
b2

N2

]
dV (2.16)

(the effective energy) is a positive-definite functional (a Lyapunov functional) for this
system if N2 > 0 (statically stable stratification) and D > 0 (the classical condition
for stability). This is valid for arbitrary U (y, z), ρ(y, z), as long as N2 > 0 and
D > 0 everywhere in the domain. With our approach we thus find that in that case
‖u′‖ ≡ [

∫ ∫
u′2dV]1/2, ‖v′‖, ‖w′‖ and ‖b‖ can be kept arbitrarily small by choosing

the initial disturbance amplitudes small enough. With this norm as a measure for the
magnitude of the perturbations, the flow is stable ‘in the mean’ (Drazin 2002).

Returning to the case ν �= 0, κ �= 0 and Uy, Uz and N2 constant, we find with (2.14)
and Uz∇u′ · ∇b � |Uz||∇u′||∇b| that if D > 0

dE

dt
� −

∫ ∫
f 2

D

(
νN2|∇u′|2 − (ν + κ)|Uz||∇u′||∇b| + κ

Φ

f 2
|∇b|2

)
dV

−
∫ ∫

ν(|∇v′|2 + |∇w′|2)dV

= −
∫ ∫

f 2

D

[
νN2

(
|∇u′| − 1 + P

2P

|Uz|
N2

|∇b|
)2

+
κ

N2

(
N2Φ

f 2
− (1 + P )2

4P
U 2

z

)
|∇b|2

]
dV

−
∫ ∫

ν(|∇v′|2 + |∇w′|2) dV, (2.17)

where the final form of the right-hand side is obtained by completing the square. If

N2Φ >
(1 + P )2

4P
f 2U 2

z , (2.18)

we also have D =N2Φ − f 2U 2
z > 0 for all positive P (because (1 + P )2/4P � 1) and

E (2.16) is positive-definite. Thus (2.17) shows that when (2.18) is satisfied, we have
dE/dt � 0, where equality only occurs when ∇u′, ∇v′, ∇w′ and ∇b =0 everywhere.
In a closed domain, with our boundary conditions, these gradients can only vanish
when u′ = v′ =w′ = b = 0. Thus it follows that if the flow is entirely enclosed, it is
asymptotically stable, that is, limt→∞ E = 0, and the flow is forced toward the state of
rest with constant N .

3. Zonal flow on the equatorial β-plane
In the same fashion as in § 2 we now derive a stability criterion for a simple flow

on the equatorial β-plane. For a steady, zonally symmetric parallel shear flow U (y, z)
in the x-direction (west–east) on the equatorial β-plane, the (Boussinesq) balance
equations would be

βyU = − 1

ρ0

∂p

∂y
+ ν∇2U, −γU +

g

ρ0

ρ = − 1

ρ0

∂p

∂z
, κ∇2ρ = 0;
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βy replaces f as the ‘vertical’ Coriolis parameter while we retained the non-traditional
horizontal component γ =2Ω , with Ω Earth’s angular velocity. We will assume that
ν and κ are very small and that the unperturbed flow and corresponding density
field evolve very slowly. In the analysis we thus assume that essentially the basic
flow can be considered steady. With this assumption we can set ∇2U = 0 so that the
thermal-wind balance is

g

ρ0

∂ρ

∂y
= βyUz + γUy. (3.1)

The linear perturbation equations for zonally invariant perturbations are

Dν
t u

′ + (Uy − βy)v′ + (Uz + γ )w′ = 0, (3.2)

Dν
t v

′ + βyu′ = − 1

ρ0

∂p′

∂y
, (3.3)

Dν
t w

′ − γ u′ − b = − 1

ρ0

∂p′

∂z
, (3.4)

Dκ
t b − (βyUz + γUy)v

′ + N2w′ = 0, (3.5)

plus the incompressibility condition (2.6) (see also Hua et al. 1997). The thermal-wind
balance equation (3.1) was used to cast the buoyancy equation in the form shown in
(3.5). Proceeding as in § 2, we first establish that

v′ =
βy

D

[
N2Dν

t u
′ − (Uz + γ )Dκ

t b
]

w′ =
βy

D

[
(βyUz + γUy)D

ν
t u

′ − (βy − Uy)D
κ
t b

]
,

⎫⎪⎬
⎪⎭ (3.6)

where

D = βy(βy − Uy)[N
2 + γ (Uz + γ )] − (βy)2(γ + Uz)

2. (3.7)

When ν = κ = 0, Hua et al. (1997) give the criterion necessary for instability

βy(βy − Uy)[N
2 + γ (Uz + γ )] < (βy)2(γ + Uz)

2. (3.8)

To get this, the normal-modes assumption was made by Hua et al. (1997) in
conjunction with the inviscid, non-diffusive Eliassen–Sawyer equation, similar to
(2.8). Changing ‘< ’ to ‘> ’ in (3.8) would imply that the condition for stability is that
D > 0 everywhere. Note that if we identify f = βy then in the traditional dynamics
(γ = 0), D > 0 is the same as N2Φ >f 2U 2

z in the f -plane dynamics, the classical
condition for stability.

Adding v′ × (3.3) + w′ × (3.4) we get

∂

∂t

1

2
(v′2 + w′2) + βyu′v′ − γ u′w′ − w′b = − u′ · ∇p′/ρ0 + ν(v′∇2v′ + w′∇2w′). (3.9)

Substituting (3.6) in (3.9), we find that

βyu′v′ − γ u′w′ − w′b =
1

D

[
Au′Dν

t u
′ − B(u′Dκ

t b + bDν
t u

′) + ΦbDκ
t b

]
, (3.10)

with

A = (βy)2(N2 − γUz) − βyγ 2Uy, B = βy(βyUz + γUy), Φ = βy(βy − Uy). (3.11)
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Now consider the case ν = κ = 0 so that Dν
t =Dκ

t = ∂/∂t . Integration over the
meridional plane results in dE/dt = 0 with

E =

∫ ∫
1

2

(
v′2 + w′2 +

1

D
[Au′2 − 2Bu′b + Φb2]

)
dV

=

∫ ∫
1

2

(
v′2 + w′2 +

1

D

[
Φ

(
b − B

Φ
u′

)2

+
(AΦ − B2)

Φ
u′2

])
dV

=

∫ ∫
1

2

(
v′2 + w′2 +

Φ

D

(
b − B

Φ
u′

)2

+
(βy)2

Φ
u′2

)
dV. (3.12)

To obtain the last form we used the fact that AΦ −B2 = (βy)2D. Equation (3.12) holds
when the same (boundary) conditions as in § 2 are prescribed. The effective energy
E will again be positive-definite if Φ/D > 0 and Φ > 0, or, when D > 0 and Φ > 0
everywhere. The point y = 0 is special in that there D = 0. However, assuming that
for small positive y, Uy ≈ U 0

y × y1+ ε (ε � 0), we find that in the limit y ↓ 0, the factor

(βy)2/βy(βy−Uy) remains finite except when both ε = 0 and U 0
y = β . In that case B/Φ

also becomes infinite. The term Φ/D remains finite unless N2 − Uz(Uz + γ ) = 0 (when
ε > 0) or (β − U 0

y )[N2 + γ (Uz + γ )] − β(γ + Uz)
2 = 0 (when ε =0). For small negative

y we arrive at the same conclusion, assuming that Uy ≈ U0 × − |y|1+ ε . Excluding
these special cases, we have a stability proof for arbitrary U (y, z) and ρ(y, z) (and
corresponding N2(y, z)) when Φ > 0 and D > 0 for y �= 0.

If γ = 0 (traditional β-plane dynamics), D will be negative when there is a negative
Rayleigh discriminant Φ < 0. In that case Φ/D in (3.12) is positive, but the factor
(βy)2/Φ which multiplies u′2 is negative. Hence perturbations can grow without
violating the conservation law dE/dt = 0. Hence we expect the flow to be unstable.
This is well-known from normal-modes analysis. See for example Dunkerton (1981)
and Griffiths (2003) who show that any flow with Uy �= 0 at and around y =0
is unstable: there is then always a range of y-values for which the Rayleigh
discriminant Φ < 0. Hence any flow with finite horizontal shear at the equator
is inertially unstable (in the y-range where Φ < 0). On the other hand a flow for
example with U (y) = U0 exp(− 1

2
y2/L2

h) is inertially stable for any U0 > 0 (an eastward
flowing Gaussian jet, similar to an equatorial Kelvin wave). When U0 < 0 however,
it is stable only when |U0|/L2

h <β (Lh is some arbitrary horizontal length scale).
Knowing that such a flow can be classically stable, we will study the stability of

U = U0(1 − 1
2
y2/L2

h) + Uzz while N2 = constant and ν > 0 and κ > 0. This flow can
be considered a local (small y) approximation to the Gaussian jet, with additional
constant vertical shear Uz. This is a convenient choice since the coefficients A/D, B/D

and Φ/D in

∂

∂t

1

2
(v′2 + w′2) +

1

D

[
Au′Dν

t u
′ − B(u′Dκ

t b + bDν
t u

′) + ΦbDκ
t b

]
= −u′ · ∇p′/ρ0 + ν(v′∇2v′ + w′∇2w′) (3.13)

do not depend on the spatial variables. By partial integration we find an equation
essentially the same as (2.14):

dE

dt
= −

∫ ∫
1

D ′ [νA′|∇u′|2 − (ν + κ)B ′∇u′ · ∇b + κC ′|∇b|2]/dV

−
∫ ∫

ν
(
|∇v′|2 + |∇w′|2

)
dV, (3.14)
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with

E =

∫ ∫
1

2

(
v′2 + w′2 +

C ′

D ′

(
b − B ′

C ′ u
′
)2

+
β

C ′ u
′2
)

dV, (3.15)

D ′ =
(
β + U0/L

2
h

)
[N2 + γ (Uz + γ )] − β(γ + Uz)

2, (3.16)

and

A′ = β(N2 − γUz) + γ 2U0/L
2
h, B ′ = βUz − γU0/L

2
h, C ′ = β + U0/L

2
h. (3.17)

Thus, E is positive definite if D′ > 0 and C ′ > 0. With B ′∇u′ · ∇b � |B ′||∇u′||∇b|, it
follows that if D′ > 0

dE

dt
� −

∫ ∫
1

D ′ [νA′|∇u′|2 − (ν + κ)|B ′||∇u′||∇b| + κC ′|∇b|2] dV

−
∫ ∫

ν(|∇v′|2 + |∇w′|2) dV

= −
∫ ∫

1

D ′

[
κC ′

(
|∇b| − 1 + P

2

|B ′|
C ′ |∇u′|

)2

+
ν

C ′

(
A′C ′ − (1 + P )2

4P
B ′2

)
|∇u′|2

]
dV

−
∫ ∫

ν(|∇v′|2 + |∇w′|2) dV. (3.18)

This is of the same form as equation (2.17) for the parallel shear flow on the f -plane.
With (3.11) we find that A′C ′ − B ′2 = βD′. Hence if A′C ′ > (1 + P )2B ′2/4P then
automatically D′ > 0 because (1 + P )2/4P � 1 for positive P . If also C ′ > 0, E is
positive definite and at all times dE/dt � 0. In summary if A′C ′ > (1 + P )2B ′2/4P , or

(
β + U0/L

2
h

)[
β(N2 − γUz) + γ 2U0/L

2
h

]
>

(1 + P )2

4P

(
βUz − γU0/L

2
h

)2
(3.19)

and β + U0/L
2
h > 0, the flow is stable.

If U0 = 0 (no horizontal shear), (3.19) reduces to

N2 − γUz >
(1 + P )2

4P
U 2

z .

If γ = 0 (traditional β-plane dynamics), this coincides with (2.18) if we set Uy = 0
there since then Φ = f 2 so that f 2 cancels out. With γ �= 0, the sign of the vertical
shear affects the criterion, unlike in the parallel shear flow case on the f -plane. But,
in view of the smallness of γ ≈ 1.5 × 10−4 s−1, the correction is negligible. If we retain
γ and let the vertical shear vanish (Uz = 0), the condition for stability (3.19) can be
rewritten as

β
[
βN2 + (γ 2 + N2)U0/L

2
h

]
>

(1 − P )2

4P
γ 2

(
U0/L

2
h

)2
. (3.20)

This suggests that when γ �= 0, the horizontally sheared flow U = U0(1 − 1
2
y2/L2

h)
may be unstable if the left-hand side is smaller than the right-hand side, even if
U0 > 0, which would always be stable when ν = κ = 0. But, it is a mere curiosity in
view of the smallness of β ≈ 2.3 × 10−11 m−1 s−1. If it is accepted that changing ‘> ’
to ‘<’ in (3.20) would imply instability, then in view of the magnitudes of γ and
β , the dominant term on the left-hand side is the term βN2U0/L

2
h since generally

one has γ 2 ≈ 10−8 s−2 � N2 in the oceans. With a Prandtl number of 7, say, the
term (1 − P )2/4P ≈ 1.3 and instability would only be possible if (approximately)
βN2 <γ 2U0/L

2
h. With a typical large oceanic value, N2 = 10−4 s−2, this would be
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accomplished with U0 > 10 cm s−1 and Lh =1 km, which corresponds to extremely
high shear. On the other hand if N ≈ γ (very weak stratification), then U0 > 1 cm s−1

and Lh ≈ 30 km may be sufficient. But still, since the profile is an approximation for
small y of U = U0 exp(− 1

2
y2/L2

h), this corresponds to a very narrow Gaussian flow at
the equator. These extreme values are not needed if the Prandtl number is very large
or very small, but this does not apply to terrestrial oceanic or atmospheric flows.

4. Summary
We have derived sufficient conditions for linear stability of parallel shear flows

subjected to zonally invariant perturbations. With elementary manipulations of the
linear perturbation equations we derived what we call the effective energy E, which
defines a norm for the perturbations when the classical conditions for stability are
met. The essential step in both § 2 and § 3 was to utilize the presumed invariance of
the perturbations in the along-flow (x) direction in conjunction with the buoyancy
equation. This allowed us to express the meridional perturbation velocities v′, w′

in terms of u′ and the buoyancy b (equations (2.9) and (3.6), respectively). When
substituted in the equation for the meridional kinetic energy 1

2
(v′2 + w′2), in each

case this leads to an expression for the effective energy E, (2.16) and (3.12), which
is positive definite when the classical condition for stability is satisfied. That is,
if D defined in (2.10) and (3.7) is positive, plus either N2 > 0 or Φ > 0. In either
case, linear stability follows for arbitrary flows that satisfy these conditions in the
absence of viscous and diffusive effects. We find that this method also works for,
for example, baroclinic circular vortices on the f -plane (for perturbations that are
also circularly symmetric) or parallel flows on the mid-latitude β-plane (subjected to
zonally invariant perturbations), but this will not be shown here.

The conditions for stability incorporating viscosity and diffusion were obtained
for flows with no-slip boundary conditions (if boundaries are present), which were
assumed thermally conducting but can be of arbitrary shape in the meridional plane.
We essentially re-derived McIntyre’s (1970) stability boundary (2.18), but it is more
general in that it is sufficient also when normal-modes cannot possibly exist. The
extension to the equatorial β-plane (3.19) is novel we believe. Both criteria were
derived for the simplest possible flows that allowed us to make the crucial step from
(2.13) to (2.14) in § 2 and from (3.13) to (3.14) in § 3. That is, since all coefficients
multiplying the perturbative quantities were constant, we could convert terms such as
(A/D)νu′∇2u′ by integration over the domain into −(A/D)ν|∇u′|2 using the boundary
conditions (2.15) because A and D were constant. In the two examples discussed in
this paper, the positive-definite effective energy E generally diminishes with time if
(2.18) and (3.19) are satisfied and N2 > 0 or Φ > 0.

An open question is whether for example (2.18) is more generally valid. That is,
could it be a sharp stability boundary for when Uz, Uy and N2 are variable? The same
question can be asked with regard to arbitrary parallel flows on the equatorial β-
plane. Equation (3.19) suggests that in that case the equivalent condition for stability
might be

(βy − Uy)[βy(N2 − γUz) − γ 2Uy] >
(1 + P )2

4P
(βyUz + γUy)

2, (4.1)

plus the additional classical condition that Φ = βy(βy −Uy) > 0. If we follow the same
strategy as used in this paper, in order to obtain a time-evolution equation for the
positive definite E, such as (2.17) and (3.18), with a negative-definite right-hand side,
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we will obtain terms such as −ν∇(Au′/D) · ∇u′ there. For variable A/D this would
have to be judiciously estimated in conjunction with the additional terms involving
the buoyancy b. If this can be accomplished, the stability boundaries (if they exist)
most likely will become somewhat ‘fuzzy’, involving, say, maxima or minima attained
by |∇(A/D)| within the domain considered and other such estimates. This is a rather
formidable task we have not ventured to undertake.
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